一般图的最大匹配(带花树)
不只是二分图,一般图也能求最大匹配
ZOJ 3316 GAME
平面上有N个点,两个人轮流取平面上曼哈顿距离不大于L的点,谁没有点取谁就输,问后手能不能赢。
求图中每个连通分量的最大匹配,如果每个匹配都是完全匹配,后手一定赢,他每次都走先手的匹配点即可;如果某个匹配不是完全匹配,先手在这个连通分量上随便找一个点开始走,后手最后一定找不到可走的点。
#include <cstdio>
#include <cstring>
const int MAXN = 500;
int N, L;
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int Count;
struct point {
int x, y;
}p[MAXN];
inline int abs(int a) {
return a > 0 ? a : -a;
}
void CreateGraph() {
memset(Graph,false,sizeof(Graph));
for (int i = 1; i <= N; i++)
scanf("%d%d", &p[i].x, &p[i].y);
scanf("%d", &L);
for (int i = 1; i <= N; i++)
for (int j = i+1; j <= N; j++)
if (abs(p[i].x-p[j].x)+abs(p[i].y-p[j].y) <= L)
Graph[i][j] = Graph[j][i] = true;
}
void Push(int u) {
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop() {
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v) {
memset(InPath,false,sizeof(InPath));
while(true) {
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true) {
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u) {
int v;
while(Base[u] != NewBase) {
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v) {
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = 1; tu <= N; tu++)
if(InBlossom[Base[tu]]) {
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath() {
memset(InQueue,false,sizeof(InQueue));
memset(Father,0,sizeof(Father));
for(int i = 1;i <= N;i++)
Base[i] = i;
Head = Tail = 1;
Push(Start);
Finish = 0;
while(Head < Tail) {
int u = Pop();
for(int v = 1; v <= N; v++)
if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v)) {
if((v == Start) || ((Match[v] > 0) && Father[Match[v]] > 0))
BloosomContract(u,v);
else if(Father[v] == 0) {
Father[v] = u;
if(Match[v] > 0)
Push(Match[v]);
else {
Finish = v;
return;
}
}
}
}
}
void AugmentPath() {
int u,v,w;
u = Finish;
while(u > 0) {
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds() {
memset(Match,0,sizeof(Match));
for(int u = 1; u <= N; u++)
if(Match[u] == 0) {
Start = u;
FindAugmentingPath();
if(Finish > 0)AugmentPath();
}
}
void PrintMatch() {
Count = 0;
for(int u = 1; u <= N; u++)
if(Match[u] > 0)
Count++;
// printf("%d\n",Count);
// for(int u = 1; u <= N; u++)
//// if(u < Match[u])
// printf("%d %d\n",u,Match[u]);
if (Count == N) printf("YES\n");
else printf("NO\n");
}
int main() {
while (scanf("%d", &N) != EOF) {
CreateGraph();
Edmonds();
PrintMatch();
}
return 0;
}
HDU 4687 Boke and Tsukkomi
给出N个点M条边的一个图,求哪几条边不在这个图的任意一个最大匹配中。
设没删任何一条边的时候的最大匹配数为K,枚举每一条边e[i],假设这条边在最大匹配上所以删去和e[i].u,e[i].v相连的每一条边,若此时的匹配数为K-1,此边一定在某个最大匹配上并把它标记。枚举M次后没有被标记的边就是不在任何一个最大匹配上的边。
注意可能所有边都在最大匹配上,这时候要输出一个空行。
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int MAXN = 500 + 5;
int N, M;
bool G[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int Count;
struct point {
int x, y;
}p[MAXN];
struct edge {
int u, v;
}e[MAXN * MAXN];
void CreateG() {
memset(G,false,sizeof(G));
int u, v;
for (int i = 0; i < M; i++) {
scanf("%d%d", &u, &v);
G[u][v] = G[v][u] = true;
e[i+1].u = u; e[i+1].v = v;
}
}
void Push(int u) {
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop() {
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v) {
memset(InPath,false,sizeof(InPath));
while(true) {
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true) {
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u) {
int v;
while(Base[u] != NewBase) {
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v) {
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = 1; tu <= N; tu++)
if(InBlossom[Base[tu]]) {
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath() {
memset(InQueue,false,sizeof(InQueue));
memset(Father,0,sizeof(Father));
for(int i = 1;i <= N;i++)
Base[i] = i;
Head = Tail = 1;
Push(Start);
Finish = 0;
while(Head < Tail) {
int u = Pop();
for(int v = 1; v <= N; v++)
if(G[u][v] && (Base[u] != Base[v]) && (Match[u] != v)) {
if((v == Start) || ((Match[v] > 0) && Father[Match[v]] > 0))
BloosomContract(u,v);
else if(Father[v] == 0) {
Father[v] = u;
if(Match[v] > 0)
Push(Match[v]);
else {
Finish = v;
return;
}
}
}
}
}
void AugmentPath() {
int u,v,w;
u = Finish;
while(u > 0) {
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds() {
memset(Match,0,sizeof(Match));
for(int u = 1; u <= N; u++)
if(Match[u] == 0) {
Start = u;
FindAugmentingPath();
if(Finish > 0)AugmentPath();
}
}
int PrintMatch() {
Count = 0;
for(int u = 1; u <= N; u++)
if(Match[u] > 0)
Count++;
return Count;
// printf("%d\n",Count);
// for(int u = 1; u <= N; u++)
// if(u < Match[u])
// printf("%d %d\n",u,Match[u]);
}
vector<int>ans;
int vis[MAXN];
void Solve() {
memset(vis, 0, sizeof(vis));
ans.clear();
int maxmatch = PrintMatch() / 2;
for (int i = 1; i <= M; i++) {
memset(G, 0, sizeof(G));
int u = e[i].u, v = e[i].v;
for (int j = 1; j <= M; j++) if (i != j){
if (e[j].u == u || e[j].v == u || e[j].u == v ||
e[j].v == v) continue;
G[e[j].u][e[j].v] = G[e[j].v][e[j].u] = 1;
}
Edmonds();
int k = PrintMatch() / 2;
if (k == maxmatch-1)
vis[i] = 1;
}
for (int i = 1; i <= M; i++) if (!vis[i]) ans.push_back(i);
int sz = ans.size();
printf("%d\n", sz);
if (sz > 0) {
printf("%d", ans[0]);
for (int i = 1; i < sz; i++) {
printf(" %d", ans[i]);
}
}
puts("");
}
int main() {
//freopen("in.txt", "r", stdin);
while (scanf("%d%d", &N, &M) != EOF) {
CreateG();
Edmonds();
Solve();
}
return 0;
}