中国剩余定理
今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?——《孙子算经》
这是最早的关于中国剩余定理的研究。 中国剩余定理基本不会考到,但是学习证明的过程会对群的理解很有帮助。
模板
LL ex_crt(LL *m, LL *r, int n)
{
LL M = m[1], R = r[1], x, y, d;
for (int i = 2; i <= n; ++i)
{
ex_gcd(M, m[i], d, x, y);
if ((r[i] - R) % d) return -1;
x = (r[i] - R) / d * x % (m[i] / d);
R += x * M;
M = M / d * m[i];
R %= M;
}
return R > 0 ? R : R + M;
}
例题
POJ 2891 就是一道标准的中国剩余定理题目,首先判断所有m[i]
是否互质,随后套用模板即可。
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<cstdlib>
using namespace std;
#define LL long long
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 5;
int n;
void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if (!b) {d = a, x = 1, y = 0;}
else
{
ex_gcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
LL ex_crt(LL *m, LL *r, int n)
{
LL M = m[1], R = r[1], x, y, d;
for (int i = 2; i <= n; ++i)
{
ex_gcd(M, m[i], d, x, y);
if ((r[i] - R) % d) return -1;
x = (r[i] - R) / d * x % (m[i] / d);
R += x * M;
M = M / d * m[i];
R %= M;
}
return R > 0 ? R : R + M;
}
int main()
{
while (~scanf("%d",&n))
{
LL m[maxn], r[maxn];
for (int i = 1; i <= n; ++i)
scanf("%lld%lld", &m[i], & r[i]);
printf("%lld\n",ex_crt(m,r,n));
}
return 0;
}