最短路 Floyed
求多源最短路的一种方法,经常做预处理用,能处理出来图中任意两个点之间的最短距离,时间复杂度O(n^3) 模板代码:
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
if (i == k) continue;
for (int j = 1; j <= n; j++) {
if (i == j || k == j) continue;
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
POJ 1125 Stockbroker Grapevine
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxv = 500 + 5;
int dis[maxv][maxv];
int main() {
int n, num, v, w;
// freopen("in.txt", "r", stdin);
while (scanf("%d", &n) != EOF && n) {
memset(dis, 0x3f, sizeof(dis));
for (int u = 1; u <= n; u++) {
scanf("%d", &num);
for (int j = 0; j < num; j++) {
scanf("%d%d", &v, &w);
dis[u][v] = min(dis[u][v], w);
}
dis[u][u] = 0;
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
if (i == k) continue;
for (int j = 1; j <= n; j++) {
if (i == j || k == j) continue;
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
bool ok = true;
int anstime = 0x3f, ansid = 0;
for (int i = 1; i <= n; i++) {
int minn = 0;
for (int j = 1; j <= n; j++) {
if (i == j) {
continue;
}
if (dis[i][j] == 0x3f) {
ok = false;
goto end;
}
minn = max(minn, dis[i][j]);
}
if (minn < anstime) {
anstime = minn;
ansid = i;
}
}
end:
if (ok) {
printf("%d %d\n", ansid, anstime);
} else {
puts("disjoint");
}
}
return 0;
}